

 Horizon 2020 Societal challenge 5

 Climate action, environment, resource

 Efficiency and raw materials

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement NO 689150 SIM4NEXUS

D4.3: GAME LOGICS AND
GENERAL SYSTEM

REQUIREMENTS

LEAD AUTHOR: Francesc Guitart

OTHER AUTHORS: Angelos Anagnostopoulos, Gabriel Anzaldi, Chengzi Chew, Olympia Daskalou, Tim
Verwaart, Eugene Westerhof

DATE: (31 – January –2017)

 2

PROJECT
Sustainable Integrated Management FOR the NEXUS of water-land-
food-energy-climate for a resource-efficient Europe (SIM4NEXUS)

PROJECT NUMBER 689150

TYPE OF FUNDING RIA

DELIVERABLE D.4.3 Game Logics and general system requirements

WP NAME/WP NUMBER Serious Game development and testing / WP 4

TASK Task 4.2 Game logic definition – system requirements

VERSION V3.4

DISSEMINATION LEVEL Public

DATE 31/01/2017 (Date of this version) – 31/01/2017 (Due date)

LEAD BENEFICIARY Eurecat

RESPONSIBLE AUTHOR Gabriel Anzaldi (EURECAT)

AUTHOR(S)
Angelos Anagnostopoulos (EPSILON), Chengzi Chew (DHI), Olympia
Daskalou (EPSILON), Francesc Guitart (EURECAT), Tim Verwaart (WUR),
Eugene Westerhof (WUR)

INTERNAL REVIEWER Xavier Domingo (EURECAT)

DOCUMENT HISTORY

VERSION INITIALS/NAME DATE COMMENTS-DESCRIPTION OF ACTIONS

1 EURECAT 14/12/2016 1ST VERSION

2 ALL PARTNERS 23/01/2017 REVISION OF THE MAIN CONTRIBUTIONS TO THE 1ST
VERSION

3 ALL PARTNERS 30/01/2017 FINAL VERSION

 3

Table of Contents

Executive summary .. 6

Glossary / Acronyms .. 7

1 Introduction .. 9

1.1 Scope ... 9

1.2 Structure of the Document .. 9

2 Game Logic Definition .. 10

2.1 Scope of the Game .. 10

2.2 Content to be Included .. 12

2.3 Feedback across spatial scales ... 13

2.4 Game design flowchart .. 14

2.5 Player’s performance assessment ... 18

2.6 Possible use cases .. 18

3 General System Requirements ... 20

3.1 Serious Game Requirements ... 22

 Visual Style ... 22

 Game development platform requirements .. 26

3.2 Knowledge Elicitation Engine (KEE) .. 28

 Architecture Development .. 28

 KEE API ... 32

4 Conclusions... 37

5 References .. 38

 4

Figure 1: Current policy making process in Europe (before integration and partial integration) and what
the project aims to achieve ... 10

Figure 2: Interaction among all SIM4NEXUS models ... 11

Figure 3: Map of all SIM4NEXUS case studies .. 11

Figure 4: Learning by doing flowchart ... 12

Figure 5: Feedback across spatial scales facilitated by the KEE ... 14

Figure 6: User registration flowchart ... 15

Figure 7: Entity relationship diagram of the user information used in the Serious Game 15

Figure 8: Gameplay flowchart .. 17

Figure 9: General system flowchart ... 21

Figure 10: 3D realistic terrain mock up .. 22

Figure 11 Mock-up of the game HUD and terrain.. 23

Figure 12 Mock-up of the HUD with the objectives of the game being shown 24

Figure 13 Mock-up of the game with the climate policy options being activated, showing the selected
policy, the affected key indicators of that policy and the potential impacts of the other NEXUS area.
 ... 25

Figure 14: KEE modular structure .. 28

Figure 15: Software stack proposed for the production stage .. 29

 5

Table 1: Main SIM4NEXUS Serious Game concept .. 12

Table 2: Questionnaire with user information ... 16

Table 3: Unity 3D desktop browser compatibility table ... 26

Table 4: Communication requirements for KEE modules .. 32

Table 5: Implementations of WPS and WFS standards .. 35

 6

Executive summary

Dissemination and uptake

To learn by doing is one of the main objectives of the Serious Game in order to let the game players

learn the main interactions between NEXUS components. The immersive approach provided by Games

is a unique method to provide a learning environment playing with economic, environmental,

agricultural, touristic, etc. concepts. However, to be able to merge both learning and playing capabilities

using gaming interfaces requires the development of procedures that permit to effectively present the

desired concepts. These procedures are related to a step by step logic that maintain the user interested

in a story development and motivate the user to reach the main learning goals. The efforts in this

Deliverable have been invested in developing these procedure called Game Logics, depicted through

flowcharts which try to define the options, actions and states that the users can face during game play.

For the development of the NEXUS Serious Game, the requirements for software and hardware

components have been specified in this Deliverable, dividing this task into two main parts: Serious Game

and Knowledge Elicitation Engine requirements specification. Through the definition of KEE

requirements, it can be seen how it is an important piece in the Serious Game engine, as it will serve as

a backbone for both information and knowledge during user interaction. The KEE will generate useful

information for the NEXUS assessment, taking as input the interactions between the Serious Game and

the user. To this end a first proposal for the production and development environments is presented in

this Deliverable, as well as the main technologies used making stress in the openness and

interoperability capabilities of the results obtained after its development.

Changes with respect to the DoA

Not applicable

Short Summary of results (<250 words)

The main results are the development of the Game Logics flowcharts focused in the user interaction

during the game setup and the gameplay flowchart. Also the role of the user in the game has been

defined by means of an entity-relationship diagram. In regard to the system requirements, they have

been divided into two groups: Serious Game requirements and KEE requirements. Both software and

hardware requirements have been specified providing a development environment based on VMs and

specifying how this development environment will be deployed to production. Some technical solutions

for the development have been proposed making a stress on the openness and interoperability of the

final solution.

Evidence of accomplishment

Not applicable

 7

Glossary / Acronyms

TERM EXPLANATION / MEANING

ABM AGENT BASED MODELLING

API APPLICATION PROGRAMMING INTERFACE

ASF APACHE SOFTWARE FOUNDATION

CRAN COMPREHENSIVE R ARCHIVE NETWORK

DSS DECISION SUPPORT SYSTEM

GIS GEOGRAPHIC INFORMATION SYSTEM

GML GEOGRAPHY MARKUP LANGUAGE

GPU GRAPHICS PROCESSING UNIT

GUI GRAPHICAL USER INTERFACE

HTML HYPERTEXT MARKUP LANGUAGE

HTTP HYPERTEXT TRANSFER PROTOCOL

HUD HEAD UP DISPLAY

IE INFERENCE ENGINE

JDK JAVA DEVELOPMENT KIT

JRE JAVA RUNTIME ENVIRONMENT

JVM JAVA VIRTUAL MACHINE

KEE KNOWLEDGE ELICITATION ENGINE

LXC LINUX CONTAINER

OGC OPEN GEOSPATIAL CONSORTIUM

OS OPERATING SYSTEM

PC PERSONAL COMPUTER

P&R PENALTIES AND REWARD

REST REPRESENTATIONAL STATE TRANSFER

SDI SPATIAL DATA INFRASTRUCTURE

 8

TERM EXPLANATION / MEANING

SDM SYSTEM DYNAMIC MODEL

SOAP SIMPLE OBJECT ACCESS PROTOCOL

SQL STRUCTURED QUERY LANGUAGE

SRTM SHUTTLE RADAR TOPOGRAPHY MISSION

VM VIRTUAL MACHINE

WCS WEB COVERAGE SERVICE

WFS WEB FEATURE SERVICE

WMS WEB MAP SERVICE

WPS WEB PROCESSING SERVICE

WS WEB SERVICE

XML EXTENSIBLE MARKUP LANGUAGE

 9

1 Introduction

1.1 Scope
The current Deliverable aims to formalize Game Logics and Systems requirements. From the Game

Logics point of view the game execution flow will be defined taking into account the learning goals

definition from D4.1, but also the requirements coming from WP1, WP2, WP3 and WP5. The final

objective is to define the logics behind the game to achieve the learning objectives following the “to

learn by doing” procedure.

Flowcharts included in this document will define the steps to follow during the game execution and the

responses provided to the game user. From the system requirements point of view, the information

included in the system and the architecture needed to assist the game development will be specified.

To this end, the outputs of Deliverable 4.1 will be used, as well as the many interactions with WP3 in

order to structure the way that both the system and the Game will interact with the System Dynamic

Models (SDM) and the Thematic Models. The main objective is to be able to sketch how the system will

handle and manage the data to provide an immersive environment to improve and maximise the NEXUS

learning results. While Game GUI and Logics is one of the most important pieces in the “to learn by

doing”, the steps to guide the user, the options offered and the recommendations to take among all

the options are also very important pieces to make the user feels in the game and understands the

losses and gains. The software and hardware requirements to use in the Serious Gaming tool will also

be defined.

1.2 Structure of the Document
This report is structured in 5 Chapters:

 Chapter 2: details the Game Logic definition and some important information to be included in
the game, such as the user information. Through the construction of flowchart, the game logics
will be described at high level. Also the game setup procedure is depicted through a flowchart.
The user information needed during the game is sketched by means of an entity-relationship
diagram followed by a form describing the desired information from the user to be captured by
the KEE.

 Chapter 3: details the General Systems Requirements, splitting the Serious Game part and the
KEE part. For the Serious Game, some GUI proposals are presented as well as the general
architecture regarding communication and controllers. For the KEE, the different sub modules
are presented, as well as an API that will permit the Serious Game to communicate with the KEE
but also it will permit any other system to query and therefore get NEXUS assessment from the
KEE.

 Chapter 4: concludes this deliverable, highlighting the main results and describing the future
steps and work to do in coming months.

 Chapter 5: provides some references used throughout the document and provides some further
reading in case the reader needs more specific information about the topics covered along this
deliverable.

 10

2 Game Logic Definition

The main objective of the Serious Game tool is to assist policy makers and stakeholders to better

understand and visualise policies at various geographical and temporal resolutions, leading towards a

better scientific understanding of the Nexus via unique immersive experience.

The game component for this project is both a visualisation tool to show results from the Knowledge

Elicitation Engine (KEE) as well as a tool to explain to policy makers, students, and practitioners how

different policies from Food, Energy and Water sector influence one another and therefore improves

the way current policies are being made.

Figure 1 shows the policy making process in Europe currently (before integration and partial integration)

and what the project aims to achieve.

Figure 1: Current policy making process in Europe (before integration and partial integration) and what
the project aims to achieve

2.1 Scope of the Game
The SIM4NEXUS serious game consists of many different components including the Knowledge
Elicitation Engine (KEE), System Dynamic Models (SDMs) and underlying Thematic Models. The
interaction among all these models is summarized in Figure 2: the SDMs are the active components
simulating the bio-physical and socio-economic processes explored in the case studies. The KEE is used
to collect and analyse data from the games, such as the policy choices that players with particular
background and expertise make, the consequences for the nexus domains following from the
simultaneous choices players have made, and the players’ learning, expressed as the evolution of their
scores in the game.

 11

Figure 2: Interaction among all SIM4NEXUS models

The game will also be used in 12 case studies: the Global and European case studies and the national

and regional studies depicted in (Figure 3). Each case study will be considered as a separate “level” in

the game.

Figure 3: Map of all SIM4NEXUS case studies

The goal of the game is to learn about different policies on the nexus and how these policies impact a

particular case study through a “learning by playing” approach. This approach is summarised in Figure

4.

 12

Figure 4: Learning by doing flowchart

Based on this concept the game play for the game is as follows (Table 1):

Table 1: Main SIM4NEXUS Serious Game concept

As a player, you represent policy makers in the various sectors in a particular area – food, energy,

water, climate and land use. Your aim is to fulfil the targets (objectives) set out by the national or

international bodies by changing or adapting new policies in your area. To succeed in the game, you

must learn to fulfil these targets by mixing and matching various cross sector policies without

compromising the existing status quo of the other sectors.

2.2 Content to be Included
This section summarizes the main content to be included in the Serious Game, both trough the

interfaces and the Logics that the game contains, but also through the assistance of the Knowledge

Elicitation Engine (KEE), that can provide information and further knowledge to stress the immersions

of the game user in each case study. The identification and formalization of the content to be imparted

is important for the Game Logics requirements definition, as the logics behind the game must guide the

user through these contents in order to impart the knowledge to be imparted in each case study. Also,

this identification is required for the construction of the KEE as well as the way both the Game and the

KEE architecture will communicate the knowledge and information. This content is divided in 3 main

parts:

1. Core Experience – What is the player experiencing as they play the game?

The core experience in the game is to play the role of policy makers in food, energy, water,

climate, land use. In the game, the player will typically start off with separate “silo-thinking”

approaches towards decision making and policy implementation. Over the course of playing the

 13

game, they will be encouraged to change towards a more integrated NEXUS-compliant policy

implementation approach and decision making.

2. Base Mechanics – What does the player actually do?

The player will have a target at the start of each turn of the game and he/she will have to

implement policies to try to achieve the target. The turn ends when the player has decided on

the policies which are to be implemented to achieve the targets and clicked on “next turn”

button. The game will compute the policies made and an analysis of the decisions will be

displayed in the following turn, with a new target to achieve for the turn.

The targets are envisioned to be displayed in a step-by-step manner to the player. This will help

guide the player on what to do during the game play.

3. Penalties and Reward (P&R) System – What behavior within the game is encouraged
or discouraged?

Silo-thinking in decision making and policy implementation within the game is discouraged,

whereas integrated NEXUS-compliant decision making is encouraged. For every target in each

turn, the player is encouraged to look at policies in all sectors and consider them to achieve a

target.

The P&R system will be in 3 parts:

i. Key indicators across all NEXUS components. These key indicators are yet to be defined and
will require inputs from WP2, WP3, and WP5. It is noted that while it is not possible to have
all key indicators showing positive values all the time, the player will be rewarded when
there are more indicators showing positive results than vice versa. At this moment of
writing, there is also no consideration to weigh the indicators yet and the assumption is that
all indicators will have the same weight. This may change as the project processes.

ii. Events within the game. Events are news happening “on the ground” which adds a societal
and cultural aspect to the game. These events will be narrated in the same tone as the
shared socioeconomic pathways and will be triggered based on the decisions the player
made in the game. There will also be uncertainties in event triggers to add more realism in
the game, e.g. the occurrence of extreme events such as economic crisis or disaster events.
There will be 3 category of events informational events which are neutral, negative events
which will penalize the player by deducting points and positive events which will reward the
player with bonus points.

iii. Score. There will be a score for the player. This score will indicate how successful the player
is applying NEXUS-compliant decision making in achieving the targets in the game. Every
progression in the time step of the game will add to the score to encourage the player to
continue, every policy implemented will add to this score and the events will add to the
score.

2.3 Feedback across spatial scales
The feedback between spatial scales of policy making can facilitated by the KEE. The KEE collects data

about players’ policy choices and the resulting consequences for the diverse NEXUS components. This

mechanism can be used to feed new targets, resulting from games at global or continental scale, into

games at national or regional scale. For instance, some policy may result from playing a game on the

European level. This policy may entail new targets on national and regional levels. By playing games with

these new targets with national and regional policy makers, data can be collected about their reactions

 14

and the consequences for the NEXUS components. The KEE can then inform the policy makers on the

European level. Figure 5 illustrates this feedback loop.

Figure 5: Feedback across spatial scales facilitated by the KEE

2.4 Game design flowchart
This section provides one of the main objectives of this Deliverable is to provide the definition of the

Serious Game logic. This logic will be defined by means of flow charts, these flow charts have the unique

capacity to show the steps to follow for the user inside the game and their order by connecting them

with arrows. This diagrammatic representation illustrates a solution model to the logics behind the

Serious Game. This section also provides how the user information will be structured in terms of the

logical structure to be used in the Serious Game and the required information to assist the groups of

user and classify the different actions in the KEE. The logical structure is defined by means of an entity-

relationship diagram that has the capacity of describing inter-related things of interest in a specific

domain of knowledge, in this case the game user. The entity-relationship model is composed of entity

types (which classify the user information) and specifies relationships that can exist between instances

of those entity types.

The description of the game design in terms of user (inter)actions has been divided in two related
flowcharts: user registration and game play. The user registration flowchart (Figure 6) begins with a
login/registration stage. In order to let the KEE provide correct answer, it is important that the
characteristics of the player are known. This can be accomplished by requiring the player to login to the
game, or - if the player is new -by requiring to register with the game in order to obtain the background
(student, policymaker, general public, etc.) and area of expertise (Nexus component) of the prospective
player.

 15

Figure 6: User registration flowchart

A first proposal of the information required in the Serious Game for the user is depicted in Figure 7

Figure 7: Entity relationship diagram of the user information used in the Serious Game

 16

When a player has logged on the system opens the main menu. The game can be played by an individual
player. Alternatively, it can be used in a group session moderated by a facilitator. During this stage, the
setting of the game must also be defined since it is important for the KEE to know the context of the
game play (e.g. does it concern for a workshop with policymakers, is it for education purposes with a
group of students etc.). Therefore, the facilitator can register the participants in a session recording
information related to:

 Group or singular playing

 Type of the participant

 Expertise level regarding the Nexus

 Level of cooperation across policy areas

Additionally there is more information about the game user that it is required to assist in the decision

support system, as well as the other modules of the KEE to better assist and generate knowledge from

the game development. This information, is related to the user, but not used during the game logics

development. Therefore, the game should present a questionnaire where the information presented in

Table 2 is included. It will be investigated how this information can be presented to be included in a

non-intrusive manner.

Table 2: Questionnaire with user information

Question Possible Answers

Age 14-99/Prefer not to say

Sex Male/Female/Prefer not to say

Country List of world countries/Prefer not to say

Education List of education/Prefer not to say

Are you playing an individual user or in a group
session?

Yes/No

When in a group session:

What type of participants? Students/policy makers/experts

Expertise level Water: low ………… high
Energy: low ………… high
Land use: low ………… high
Climate: low ………… high
Agri/Food low ………… high

Level of cooperation across policy areas allowed in
the group session:

low ………… high

After registration, the game is initialized. All the data collection methods used in the game will follow all
the procedures that have been implemented within SIM4NEXUS project for data collection, storage,
protection, retention and destruction and confirmation ensuring that data collection complies with
national and EU legislation. The ethics issues involved in the SIM4NEXUS study concern general ethical
issues of informed consent, anonymity and confidentiality associated with the voluntary involvement of
human participants in the European Union. For more information on ethics and data management
aspects, please refer to Deliverable 9.1 and Deliverable 4.2.

The ethics issue involved in the SIM4NEXUS project is in the area of the collection and use of personal
data and the general ethical issues of informed consent, anonymity and confidentiality associated with
the voluntary involvement of participants in SIM4NEXUS research activities in Europe.

The gameplay flowchart (Figure 8) depicts how a user can interact with the game and what actions are
taken as response to user inputs. First, a user must select a case study scenario, i.e. a particular case
study combined with a predefined set of input data such as a climate scenario. The number of time

 17

steps (turns) and the indicator target values for individual players are fixed, but when playing in a group
setting, the facilitator may adjust the indicator target values.

After selecting a case study scenario, a user is presented with a narrative explaining the game and the
case study, can change policy options, and indicate when (s)he is ready for the next turn. When the user
is ready for the next turn, the simulation engine will run the system dynamics model (SDM) for the next
time step, and report the new indicator values to the to the users. Changes in policy options and
simulated outcomes are recorded by the KEE. Subsequently the graphical displays in the gameplay
screen are updated and the user(s) can take a new turn, as long as the game is not completed. When
the game is completed, i.e. when all predefined time steps have been passed, the final evaluation is
performed and the score is reported to the user and reported to the KEE.

Figure 8: Gameplay flowchart

 18

2.5 Player’s performance assessment
At the end of each game, a score is computed that indicates how close the policy targets are met by the
player. The score is based on the indicator values resulting from the player’s policy choices. SIM4NEXUS
deliverable D4.1 contains an inventory of relevant indicators for each case study (Table 17 in the 30
November 2016 version of D4.1). A first approach to include final score of a game session based on
quantifiable results, is the weighted sum of squared differences between target values and actual
indicator values at the end of the game. During the detailed specification of the game instantiations for
each case study, the weight factors for each instantiation can be determined (some weight factors may
actually equal zero, when some indicators are irrelevant to evaluate a player’s performance).

The score can be computed as follows:

𝑆 = 1 −∑𝑤𝑖

(max{0,𝑚𝑖(𝑔𝑖 − 𝑥𝑖)})
2

(𝑔𝑖 − 𝑥0𝑖)
2

𝑖

Where:

 the score 𝑺 is based on a weighted sum of squared, normalized, differences between indicators
𝒙𝒊 and targets 𝒈𝒊;

 the 𝒙𝟎𝒊 stand for the starting value of the indicator at the beginning of the game;

 for indicators that must be maximized 𝒎𝒊 = 𝟏 and for indicators that must be minimized 𝒎𝒊 =
−𝟏;

 the sum of the weights ∑ 𝒘𝒊𝒊 =1;

 𝑺 = 𝟏 is the maximal score to be attained (full compliance with all targets).

Such a score can be computed over all indicators and per policy area, making clear on which areas to
focus in order to improve the general score. Thus it can serve as a basis to advice users and explain
opportunities to improve their performance in nexus management.

At this point, this is a first approach, and during the development of the game it can be improved and
modified to include events and non-quantifiable results with the aim to have a better player’s
performance assessment.

2.6 Possible use cases
This section describes how the game can be used in different organizational settings. First it describes

the use of the game by a single player, controlling all policy options. Then it describes the options for

playing the game in sessions led by a trainer or group facilitator, where participants play roles of policy

makers in particular nexus domains. The session is concluded by a description of the options to play the

game with artificial agents. In the latter case, users take the roles of particular policy makers while other

roles are fulfilled by artificial agents, based on data collected by the knowledge elicitation engine.

 Single player controlling all policy options

In the game setup, the user has opened a new game session and initialized a predefined scenario.

The user has not selected a role as policy maker in a particular nexus domain. In the main gameplay

screen the user is presented with policy options enabled for all nexus domains. Thus, while playing

subsequent turns, the user can interfere with policies in all domains and attempt to achieve a

balanced set of targets across the entire nexus. The evaluation is expressed in a score applying

weight factors for the different targets. This setting for playing the game is particularly suitable for

education and training to offer insight into relations across the entire nexus.

 19

 Multiple players, each taking policy makers’ roles on particular nexus domains

Playing games with groups where participants take different roles, requires a group facilitator to set
up the game. In the simplest case, the facilitator can ask the players for their policy decisions and
enter these into a game set up as in the single player case described above.

As a future extension of the game, we envision a more advanced multi-player setting, where the
facilitator starts a game (in a game facilitator role) and assigns the players roles as policy makers in
a particular nexus domain. The game logic is then running on a central server, but players are
presented with an individual main gameplay screen in which all policy options and indicators are
visible, but only the policy options related to the selected role can be changed. Turns are
synchronised on the central server and the next time step is not taken until all participants have
made their policy choices.

 Playing the game with artificial agents

As another future extension, we envision artificial agents participating in the game. During the
games as described above, the KEE collects data on the policy choices the players make and the
resulting outcomes in terms of indicators. Since users have supplied information on their
background and expertise when registering for the game, the KEE can learn the behaviours of policy
makers in particular domains. Combined with other knowledge, the collected data can be used to
design artificial agents, playing the roles of policy makers. The results attained by human players
can be used to configure agents on a scale ranging from focus on one particular nexus domain
(neglecting the other domains) to full awareness of all domains. In this setting, users can select a
role as policy maker in one of the nexus domains, and then play the game as in the multiplayer
setting.

 20

3 General System Requirements

This section contains the whole system requirements, taking into account both the Serious Game per

se and the backbone architecture that will host the services needed to assess to the NEXUS concept.

The serious game consists of many different components. All these components will form the

visualisation part of the serious game. The following breakdown is only meant for informative purposes.

- Communications controller: this component will connect to the KEE to retrieve data from KEE
and to pass information from the user to the KEE

- Terrain controller: this component will display the elevation terrain from open source datasets,
e.g. open street map, SRTM, google map etc.

- Grid controller: this component will display gridded data to the user

- Events controller: this component will manage the data obtained from the KEE and select what
to display to the user depending on the input of the user

- Graphical interface (GUI): this component will allow the user to interact with the game and
displays the relevant information to the user

The communications controller will be in charge of handling the communication requirements of the

game and transforming them to queries to the KEE. In the KEE side, all queries will be processed through

a standardized API that will provide all the information needed in the Serious Game side. The KEE is

formed by the following modules:

 System Dynamic Models (SDM): it will be based in an R simulation module that will perform
simulations for each Study Case, taking as an input the current status of the game and the
policies to execute. The results will drive the game to a new state in the future

 Semantic Repository: will provide of data the game, regarding the Study Case, but also regarding
the player and other different parameterizations within the game

 Decision Support System (DSS): it will provide analysis and recommendations, to both the
players in the game and domain experts. It is the main part in the KEE that will help to better
understand the linkages in the Nexus

 Agent Based Module (ABM): it will perform tasks of adversary movements in the game

Figure 9 depicts the Serious Game interaction flowchart among modules. The rest of the section will

specify the requirements of both the Serious Game and the rest of the system including the KEE and its

API.

 21

Figure 9: General system flowchart

Logic on what events
are triggered based on
what the user choses

Simulation
results from

SDM

Semantic
Repository
(Database)

Decision
support system

(DSS)

GUI

Terrain
controller

Grid
controller

Events
controller

Communications
controller

User clicks
on the game

Terrain will be
shown to the
user based on

whatever
zoom settings

Chosen grid
data will be

shown to user

Triggered
events will

be shown to
the user

User actions will
be logged and
passed to the

communications
controller

Dynamic data will
be retrieved from

KEE

Static data to
be stored in

the game

KEE API

Agent based
modelling

(ABM)

Inference
Engine (IE)

Data transfer
between serious

game and KEE

Data storage
includes list of
policies, user

inputs…

Artificial
intelligence to

simulate
computer actions

in the game

User inputs are
analysed

Analysis is then
used to improve

the ABM

Recommendation
on which are the

best actions to take

SDM will be
run as R script

and results
will be

provided
through the

API

 22

3.1 Serious Game Requirements

 Visual Style

Terrain Style

The proposed visual style is a 3D space with realistic terrain. Visualisation of gridded data and events

are not yet finalised. The 3D realistic terrain mock up is as shown below (Figure 10).

Figure 10: 3D realistic terrain mock up

Graphical User Interface (GUI) Mock-ups

The graphical user interface will be made to fit the target audience, it should be easy to navigate,

provides clear call to action and interactive buttons and be able to display all the important information

from the KEE to the end user. It should also has a more serious feel to reflect the science behind the

game.

This section does not show the actual GUI style and design but only shows the mock-ups which forms

the key elements of the game.

 23

Figure 11 Mock-up of the game HUD and terrain

It is envisioned that the game consists of a 3D terrain of the case study area with key areas of interest,

shown as shapes on the 3D map in the above figure. These areas of interest reflect the possible land

use of sectors relevant to the case study, for example, it can consist of urban area, agriculture area,

forest area and so on. The areas of interest will also contain events, animations and status to visually

show the impacts of policies made in the game which may not may not be quantifiable.

The head up display (HUD) of the game consists of several elements – indicator area, additional options

area, policy selection area as well as time. The indicator area is shown in the top left hand corner of the

above image and will show the key indicators for a specific sector (e.g. climate). The user can change

the indicators by turning the dial at the bottom left hand corner of the HUD. The additional options area

is shown in the mockup as 4 separate icons. The first icon (eye) will show the overview of all the policies

which are implemented and how nexus compliant they are. The second icon (checklist) will display the

objectives of the case study and whether or not the user is achieving them.

 24

Figure 12 Mock-up of the HUD with the objectives of the game being shown

The third icon (envelope) will show all the events in the game which are triggered by the policies

implemented. The fourth icon (bar chart) will display the historical key indicator values over the time

which the user has played the game.

 25

Figure 13 Mock-up of the game with the climate policy options being activated, showing the selected

policy, the affected key indicators of that policy and the potential impacts of the other NEXUS area.

The policy selection area which consists of a colored dial as shown in the mockup will allow the user to

select and choose which policies to implement. The dial has two layers, the first is the dial, by rotating

the dial, and the user would be able to change the key indicators shown. By clicking on the colored

circular sector, the user would be able to choose the policy to be implemented. Each colored circular

sector represents a specific sector, for example, yellow represents climate policies. While the policy

options menu is active, the user would be able to select different policies to implement. The indicator

area will also highlight the affected indicators based on the selected policy display. It could for example

show an increase in one particular indicator but a decrease in another. In the Policy NEXUS impacts

area, the concept here is to show what the impacts on the other NEXUS area, a bigger impact in one

particular NEXUS sector will show a part of the circle. The user will also be able to view other impacted

indicators by changing the dial.

The time area, will show the current timestamp of the game and will also indicate when the game will

end.

 26

 Game development platform requirements

The Serious Game will be developed using Unity 3D1 to provide a web-based tool playable form many
devices. Among Unity’s main features there are its unique cross-platform capabilities which make Unity
one of the most used platforms PC, consoles, mobile devices and websites game development.

To provide a web-based tool Unity makes use of WebGL2, which is a cross-platform, royalty-free web
standard for a low-level 3D graphics API based on OpenGL3 ES 2.0, exposed through the HTML54 Canvas
element as Document Object Model interfaces.

WebGL allows Unity to publish content as JavaScript5 programs which use HTML5 technologies and the
WebGL rendering API to run Unity content in a web browser. Unity WebGL supports all major desktop
browsers to some degree. However, the level of support and the expected performance varies between
different browsers. Table 3 provides an overview of browser features of interest to Unity WebGL
content, and which browsers support them.

Table 3: Unity 3D desktop browser compatibility table

 Mozilla Firefox
42

Google
Chrome 46

Apple Safari
9.0

MS Internet
Explorer 11

MS Edge 13

WebGL
support

Yes. GPU
blacklists apply.
WebGL may be
unsupported
for specific
older graphics
cards.

Yes. GPU
blacklists
apply. WebGL
may be
unsupported
for specific
older graphics
cards.

Yes. Safari 8
and higher

Yes. IE 11 and
higher

Yes

Web audio6 Yes Yes Yes No Yes

1 https://unity3d.com/

2 https://www.khronos.org/webgl/

3 https://www.opengl.org/

4 https://www.w3.org/TR/html5/

5 https://www.javascript.com/

6 The Web Audio API is required to play sound in Unity WebGL content.

https://unity3d.com/
https://www.khronos.org/webgl/
https://www.opengl.org/
https://www.w3.org/TR/html5/
https://www.javascript.com/

 27

 Mozilla Firefox
42

Google
Chrome 46

Apple Safari
9.0

MS Internet
Explorer 11

MS Edge 13

Full-screen
support

Yes Yes No. Safari
supports the
HTML5 full-
screen API, but
no keyboard
input when in
full-screen
mode, so unity
will disable full-
screen
functionality
when running
in safari.

Yes Yes

Cursor locking
support

Yes Yes Yes. Firefox up
to version 42
and safari will
not support
indexedDB for
content
running in an
iframe. Firefox
43 and higher
will fix this.

Yes Yes

Websockets Yes Yes Yes Yes Yes
Webrtc Yes Yes No No Yes
WebGL 2.0 No. Firefox

supports
webGL 2.0, but
it is disabled by
default and
needs to be
enabled in
about:config.

No No No No. Chrome
supports webGL
2.0, but it is
disabled by
default and
needs to be
enabled in
chrome://flags.

asm.js aot
compilation7

Yes No No No Yes

7asm.js is a subset of JavaScript for which a browser can specifically optimize. Browsers which implement asm.js
support may be able to run Unity WebGL content faster, because Unity uses asm.js

 28

3.2 Knowledge Elicitation Engine (KEE)
Following Figure 9 chart, the KEE modular structure can be sketched, as it will contain the following

elements:

 System Dynamic Models (SDM): it will be based in an R simulation module that will perform
simulations for each Study Case, taking as an input the current status of the game and the
policies to execute. The results will drive the game to a new state in the future

 Semantic Repository: will provide of standardized data the game, regarding the Study Case, but
also regarding the player and other different parameterizations within the game

 Decision Support System (DSS): it will provide analysis and recommendations, to both the
players in the game and domain experts. It is the main part in the KEE that will help to better
understand the linkages in the Nexus

 Agent Based Module (ABM): it will perform tasks of adversary movements in the game

From the point of view of the hardware requirements, the modules will be implemented in a cloud

based infrastructure that contains all the environment required for the development of the different

modules.

Then, another important issue to address are the communication capabilities that the KEE needs. It will

be based in an Internet available communication stack implemented with the stat of the art standards

and protocols to ensure Interoperability with the visual and logical of the game, but also with the rest

of SIM4NEXUS modules. Figure 14 shows this modular structure and Sections 3.2.1 and 3.2.2 detail the

rest of KEE requirements regarding its architecture and its API.

Figure 14: KEE modular structure

 Architecture Development

The Knowledge Elicitation Engine (KEE) requires hardware and software infrastructure to operate

properly. It has been determined that provisioning will take place in two stages:

 29

 The development stage

 The production stage

Each stage has different needs, especially in terms of hardware, with the development stage being the

precursor to the production one. Since functional requirements at the time of writing are still not fully

determined, neither can the final production stage hardware requirements be precisely set.

However, partners currently need to perform local development and testing, before deploying their

deliverable software modules on the production server, and they need to do so on an environment that

will match, as closely as possible, that of the production stage. For that reason, the following work-flow

has been suggested:

Virtual Machine (VM) will be provided to all the technical partners, based on Oracle’s VirtualBox8, a free

and open-source hypervisor for x86/x64 computers, which can be installed on a number of host

operating systems. The VM will have a software stack installed that will try to match, as closely as

possible, that of the production server. Of course, as the project evolves and new software

requirements may arise, that stack will evolve as well, and new versions of the VM will be rolled out.

8 https://www.virtualbox.org/

Figure 15: Software stack proposed for the production stage

https://www.virtualbox.org/
https://www.virtualbox.org/

 30

In addition, as the project’s software code-base expands, integration and version control systems (such

a Jenkins9 and Git10) will be installed and deployed in the VM, facilitating new software deployment.

In Figure 15, an illustration of the proposed software stack for the VM (and, eventually, for the

production server) is available.

There are four distinct software layers discernible:

OS Layer

The operating system of choice will be the latest Ubuntu Server 16.04.1 LTS Edition. Ubuntu11 Server is

a part of the larger set of Ubuntu products and operating system developed by Canonical Ltd. Ubuntu

server is a specific addition that differs a little bit from Ubuntu desktop, in order to facilitate installation

on servers.

The deployment of the final production server will leverage the LinuX Container (LXC) technology at a

base server of our choosing. The deployment will eventually be achieved using three different virtual

containers (namely: web, app and DB). At the moment of writing, and for the VirtualBox VM, no LXCs

will be deployed, and all software will reside directly on the base OS.

The production server will be constantly updated and backed up using incremental backups, based on

the Btrfs, an open-source Copy-on-Write enabled file system, offered as an integral part of Ubuntu.

Data Layer

The persistence/database layer is powered by the well-known open source relational database manager

PostgreSQL12 version 9.5. The DB layer contains also PostGIS13, an extension to PostgreSQL that adds

support for geographic objects and location queries.

Additionally, the file system itself may be used for arbitrary bit-stream (e.g. user uploaded files) storage.

References to all stored files, along with any required meta-data, should also be kept in the relational

database.

Application Layer

The application layer will feature various run-time environments, each one accommodating distinct

software modules, as developed by the various partners. Namely, those environments will include:

9 https://jenkins.io/

10 https://git-scm.com/

11 https://www.ubuntu.com/

12 https://www.postgresql.org/

13 http://www.postgis.net/

https://jenkins.io/
https://git-scm.com/
https://www.ubuntu.com/
https://www.postgresql.org/
http://www.postgis.net/

 31

 Java Virtual Machine (JVM) & Apache Tomcat

A Java14 virtual machine (JVM) is an abstract computing machine that enables a computer to run a Java

program. The Java Runtime Environment (JRE) is a software package that contains what is required to

run a Java program. It includes a Java Virtual Machine implementation together with an implementation

of the Java Class Library.

 The main reasons for choosing the Java platform are:

 Cross-platform support

 High scalability

 Wide adoption

 Maturity

 Huge library code-base available

 Open source license

 Ease of installation on infrastructure

 Common code-base with Android

Both the development VM and the production server will run the OpenJDK runtime v8, an open-source

implementation of the JVM specifications, considered to be fully compatible with Oracle’s reference

implementation. It is also part of the official Ubuntu repositories and, therefore, easily installed and

maintained (i.e. updates are part of the OS update work-flow).

The Apache Tomcat15 8.x server, is an open source Java Servlet Container developed by the Apache

Software Foundation (ASF). Tomcat implements several Java EE specifications including Java Servlet,

Java Server Pages (JSP), Java EL, and WebSocket, and provides a "pure Java" HTTP web server

environment in which Java code can run. It is also offered “natively” for Ubuntu, as part of the official

software repositories, thus making its installation and maintenance an integral part of the operating

system update work-flow.

 Python

Python16 is an interpreted, object-oriented, high-level programming language with dynamic semantics.

Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it very

attractive for Rapid Application Development, as well as for use as a scripting or glue language to

connect existing components together.

The development VM and the production Server will feature Python v.3.5, the default Ubuntu

repositories version.

14 https://www.java.com/en/

15 http://tomcat.apache.org/

16 https://www.python.org/

https://www.java.com/en/
http://tomcat.apache.org/
https://www.python.org/

 32

 R

R17 is an open-source language and environment for statistical computing and graphics. R provides a

wide variety of statistical (e.g. linear and nonlinear modelling, classical statistical tests, time-series

analysis, classification, clustering) and graphical techniques, and is highly extensible.

The development VM and the production server will both run R v3.3.2, as provided and maintained by

the official Comprehensive R Archive Network (CRAN).

 Web Layer

All the software modules built in the context of the project, that will be accessible over the web, via

HTTP/HTTPS, will be so using the Apache Web Server 18 , an open source Web server creation,

deployment and management software. It is designed to create Web servers that have the ability to

host one or more HTTP-based websites. Notable features include the ability to support multiple

programming languages, server side scripting, an authentication mechanism and database support.

Apache Web Server can be enhanced by manipulating the code base or adding multiple extensions/add-

ons.

The development VM and the production server will feature Apache v2.4, as maintained by the official

Ubuntu repositories.

 KEE API

The Knowledge Elicitation Engine will have to provide data coming from different sources and with

different formats, Table 4 summarizes the main requirements.

Table 4: Communication requirements for KEE modules

 Interface Data Technical issues

Simulations

From SDM

It has to be able to

provide a remote

processing interface

It will provide data about

scenario evaluations

Thread safe environment

The models will be

written in R

Results over features

over a portion of land

Semantic

Repository

It has to be able to

provide an interface that

recognises advanced

queries about data

The information will be

data related to a domain

with semantic structure

High semantically

structured responses

17 https://www.r-project.org/

18 https://httpd.apache.org/

https://www.r-project.org/
https://httpd.apache.org/

 33

 Interface Data Technical issues

Decision

Support System

It has to be able to

provide processing

capabilities

It will reply with

recommendations

Intense processing

capabilities

Agent Based

Modelling

It has to provide the

actions simulating an

intelligent adversary for

the game

Actions to be applied in

the user side of the game

High performance

requirements

High frequency calls

Inference Engine heterogeneous interface

providing advanced

calculations for the rest

of the modules

Heterogeneous structure Intensive processing

capabilities

The requirements for the communication are different for each module but all share the same

necessities of exchanging knowledge in terms of sharing and reusing data, algorithms and procedures.

It makes suitable to think that a feasible mechanism for the communication among modules are Web

Services.

Web Services are wide used over the Web and provide some functionalities that the KEE can take

advantage of. As explained in [1], the application of Web Services for web-based generalization

processes would benefit from the established web-based data dissemination approaches, which are

mostly implemented by Spatial Data Infrastructures (SDI). Hence Web Services enable on-demand and

on the-fly generalization processes based on the most current data.

By the application of Web Services as mean of knowledge exchange, interoperability is achieved in terms

of syntactic agreement partially thanks to the use of common standards. Most used Web Services

standards are SOAP and REST, being SOAP the most used in industry. SOAP also has been used in many

research projects such as [2] [3] [4]. These projects gave already good insights into the capabilities of

Web Services, but did not reflect the geospatial issues due to the missing geospatial concepts within

SOAP (e.g. feature encoding).

At the current moment there exist GIS Web Services that provide access to GIS data or functionalities

over the internet in a standardized way. It has to be noted that a GIS Web Service is not an Internet

mapping application, alternatively a GIS service can be consumed by, or integrated into, a web

application. A GIS Web Service can be thought of as an Interface, by which an application accesses GIS

data or functionality. GIS Web Services can provide geographic data, but they can also provide

geoprocessing tasks, such as address matching, routing, or geocoding and always provided through

standard internet protocols.

Among the advantages of using GIS web services one can find that: data does not need to be housed

locally - can come from many sources, and maintained by the hosting entity; functionality is already

provided, doesn’t need to be built by the app developer; developers can use multiple services in their

applications; GIS Web Services use standard formats regarding how they are accessed and what

 34

capabilities they have; and they are interoperability providers - can work across different platforms and

applications and over networks.

One of the most used GIS Web Service suite is the one proposed by the OGC, which comprises some

Web Services for different purposes:

 WMS: Web Map Service

 WFS: Web Feature Service

 WCS: Web Coverage Service

 WPS: Web Processing Service

 WS Common: Web Services Common

Taking into account the architecture described in Figure 14 and the requirements specified in Table 4,
the KEE can benefit of incorporating two of these OGC services: WPS and WFS.

 Web Processing Service (WPS): Is intended to be a standardized means of performing
geoprocessing tasks over the Internet. It standardizes how inputs/outputs are described, how to
request execution, how to handle output

The notion of the specification is to provide spatial processes through a standardized service
interface over the Web based on a common transfer protocol, namely the Hypertext Transport
Protocol (HTTP). The variety of spatial processes that can be described by the WPS is unlimited.
A process description for each process is available through the WPS interface. Besides a title
and an abstract the description Workshop of the ICA Commission on Map Generalisation and
Multiple Representation – June 25th 2006 includes valid process parameters and their
encoding. The client-service communication is based on the Extensible Markup Language
(XML).

 Web Feature Service (WFS): The Web Feature Service provides access and manipulation
operations on geographic features using HTTP as the underlying protocol. The WFS provides
access to vector data and is therefore fundamentally different from a WMS which produces
mere raster image representations of geospatial data as maps. A WFS can be cascaded; it can
serve data that is located at some remote WFS. When transporting geospatial data, the
interchange format is the Geography Markup Language (GML) and conforms to some GML
application schema. The operations provided by the WFS are GetCapabilities,
DescribeFeatureType, GetFeature, GetFeatureWithLock, GetGMLObject, LockFeature and
Transaction.

 Geography Markup Language (GML): GML is an XML encoding for the transport and storage of
geographic information. GML provides encodings for many concepts including features,
geometry, coordinate reference systems, topology, time and metrics. GML is defined using XML
Schema and, since GML is a complex standard, it is generally the case that a particular
application only uses a subset of the GML Schema. In fact, it might be difficult to achieve
interoperability in a community if the allowed GML elements and attributes are not restricted.

One of the most interesting features of OGC protocols is that there exist some implementations of the

standards and services that are ready to use, benefiting the implementation of OGC standards in GIS

applications. Table 5 contains some of the most notorious implementations available in the Internet.

 35

Table 5: Implementations of WPS and WFS standards

Name Licence Service/Standard Description

pywps MIT WPS PyWPS is an implementation of the Web

Processing Service standard from the Open

Geospatial Consortium. PyWPS is written in

Python.

PyWPS was started by Jachym Cepicky as part of

his project ‘Connecting of GRASS GIS with UMN

MapServer’, supported by the German

Foundation for Environment. He began to work on

this project with a scholarship by GDF-Hannover

that went from April to September of 2006.

52°North

Web

Processing

Service

GPL-2.0 WPS The 52°North Web Processing Service enables the

deployment of geo-processes on the web in a

standardized way. It features a pluggable

architecture for processes and data encodings.

The implementation is based on the current

OpenGIS specification: 05-007r7.

Its focus was the creation of an extensible

framework to provide algorithms for

generalization on the web.

WPS4R N/A19 WPS WPS4R is a solution for creating WPS processes

based on annotated R-scripts. The code was

developed in the FP7 projects UncertWeb and

GeoViQua. The product website can be found at

http://52north.org/wps4r.

OWSLib BSD-4-

Clause-

UC

WPS/WFS OWSLib is a Python package for client

programming with Open Geospatial Consortium

(OGC) web service (hence OWS) interface

standards, and their related content models.

OWSLib was buried down inside PCL, but has been

brought out as a separate project in r481.

19 Not assigned

 36

Name Licence Service/Standard Description

GeoServer GPL WFS GeoServer is an open source server for sharing

geospatial data.

Designed for interoperability, it publishes data

from any major spatial data source using open

standards.

 37

4 Conclusions

In this Deliverable the Game Logics has been defined through the development of two main flowcharts:

Figure 6: User registration flowchart and Figure 8: Gameplay flowchart. The first one describes how the

user will set up each game play. In this setting up process, an important point, regarding the collection

of user data has been identified. User data is needed for the game logics to be developed, as, taking

into account the objective of providing an immersive experience, the user is a central point in the game

logics development. However, from the KEE point of view and in order to provide useful information,

assess in regards to the NEXUS concept, and in general to do automatic learning from user interactions;

the more information collected from the user, the better. A questionnaire has been developed in order

to collect more information from Serious Game users, which will be included in the semantic repository

and used by the KEE to generate further knowledge.

Additionally, in Chapter 3, the General Systems architecture has been proposed through a modular

diagram. This diagram (shown in Figure 9) depicts the information flows and shows the interrelations

between modules. As a summary, this diagram can be divided into two main parts: Serious Game and

KEE. Regarding the Serious Game the main controllers have been identified (i.e. communication, events,

grid and terrain) as well as the GUI, where some proposals that are under developments are shown. The

communication controller will be the communicating point between the Serious Game and the KEE.

Regarding the KEE part, a modular diagram of its components has been proposed in Figure 14: KEE

modular structure. The Serious Game communication controller will make use of the KEE API, which by

means of interoperable standards will provide sub modules communications capabilities adapted to the

ones proposed. To this extent some OGC standards have been explored to investigate its suitability for

the proposed use cases. With respect to the hardware and software requirements, Section 3.2.1

provides a stack development for the KEE architecture development. Moreover, this deliverable

explains how the partners will work using VMs in a development environment and how the production

environment will be constructed by means of highly available infrastructures. Software requirements

are also provided in the attempt to safeguard a wide coverage for coming requirements during Serious

Game development.

 38

5 References

[1] T. Foerster and J. Stoter, "Establishing an OGC Web Processing Service for generalization
processes," in Workshop of the ICA Commission on Map Generalisation and Multiple
Representation, 2006.

[2] Neun and Burghardt, "Web Services for an Open Generalisation Research Platform," 2005.

[3] Neun., Burghardt and Weibel, "Spatial Structures as Generalization Support Services. In
Proceedings of Workshop on Multiple Representation and Interoperability of Spatial Data," 2006.

[4] N. Regnauld, "Improving efficiency for developing automatic generalisation solutions," 2005.

	Executive summary
	Glossary / Acronyms
	1 Introduction
	1.1 Scope
	1.2 Structure of the Document

	2 Game Logic Definition
	2.1 Scope of the Game
	2.2 Content to be Included
	2.3 Feedback across spatial scales
	2.4 Game design flowchart
	2.5 Player’s performance assessment
	2.6 Possible use cases

	3 General System Requirements
	3.1 Serious Game Requirements
	3.1.1 Visual Style
	Terrain Style
	Graphical User Interface (GUI) Mock-ups

	3.1.2 Game development platform requirements

	3.2 Knowledge Elicitation Engine (KEE)
	3.2.1 Architecture Development
	OS Layer
	Data Layer
	Application Layer
	 Java Virtual Machine (JVM) & Apache Tomcat
	 Python
	 R
	 Web Layer

	3.2.2 KEE API

	4 Conclusions
	5 References

